National Repository of Grey Literature 18 records found  1 - 10next  jump to record: Search took 0.00 seconds. 
Cell response to genotoxic stress-based anti-cancer therapies
Imrichová, Terezie ; Hodný, Zdeněk (advisor) ; Rossmeislová, Lenka (referee) ; Rotrekl, Vladimír (referee)
The dissertation deals with a cell response to genotoxic stress, specifically to anti-cancer treatments with a genotoxic mechanism of action. In principle, cells can respond to these perturbing stimuli in several ways: in case of severe DNA damage, they usually undergo apoptosis or enter senescence. In case of minor DNA damage, or upon defective checkpoint mechanisms, they may continue the cell cycle, either with successfully repaired DNA or with mutations of various kind. Thanks to selection pressure, the mutations that provide cells with a certain growth advantage under conditions of continuing genotoxic stress, gradually accumulate and render the tumor treatment-resistant. In my thesis, I focus on several aspects of this whole process. First, I participated in a characterization of a radioresistant and anoikis-resistant population of prostate cancer cells. This population was generated by irradiating cells 35 times by 2 Gy, a regime used in clinics. After this treatment, a population of low-adherent cells emerged that demonstrated increased expression of EMT- and stem cell markers. The low-adherent state of these cells was maintained by Snail signaling and their anoikis resistance by ERK1/2 signaling. Interestingly, after a protracted period of time, these cells were able to re-adhere and...
Cellular senescence escape mechanisms - anti-cancer barrier
Davidová, Eliška ; Hodný, Zdeněk (advisor) ; Horníková, Daniela (referee)
Cancer is one of the most dangerous diseases of the modern world. Therefore, many world laboratories engaged in research into the causes leading to the outbreak of this insidious disease. In this context, it has already been found that the normal animal cells do not divide indefinitely, but have a finite replicative life span. After this period, cells undergo either apoptotic processes or enter into so-called senescence, typical for proliferation arrest, but preserved metabolic processes. Further research has revealed that senescence serves as an effective anticancer program and currently is shed light on its significance in relation to various physiological or pathological processes associated with aging. In this work, the focus is on the role of senescence as a barrier for cancer development, and effectiveness. It can be assumed, that if the senescent cycle arrest functioned perfectly, the incidence of cancer among people would be recorded in much lower extent. The aim of this thesis is the current knowledge about the physiological and pathological roles of senescence and possible causes of overcoming this barrier, the result may be the uncontrolled cell division and tumorigenicity.
Changes in oxidative phosphorylation during development of cellular senescence
Zima, Michal ; Hodný, Zdeněk (advisor) ; Kašparová, Dita (referee)
Cellular senescence represents a state of permanent cell cycle arrest. It is considered to be an active response of the cell to various extrinsic and intrinsic types of stress, which are damaged and/or uncapped telomeres, activation of certain oncogenes, DNA damage and effects of several cytokines. This thesis describes current mechanisms which may result in establishment of senescence phenotype, putting those facts in association with changes in oxidative phosphorylation. In thesis are also mentioned features of senescence cells and their impact on the neighborhood. Special attention is focused on the role of reactive oxygen species in promotion of cellular senescence, mechanisms of their elevation, the role of NADPH oxidases and the inhibition of mitochondrial oxidative phosphorylation complexes by activity of cytokine signaling pathways STAT3 and TGFbeta. Key words: cellular senescence, reactive oxygen species, cytokines, mitochondria, oxidative phosphorylation chain, NADPH oxidases, Signal Transducer and Activator of Transcription 3 (STAT3), TGF-β, DNA damage response (DDR)
Mechanisms of phenotypic plasticity induced by genotoxic stress
Přibyl, Miroslav ; Hodný, Zdeněk (advisor) ; Remešová, Hana (referee) ; Vomastek, Tomáš (referee)
Therapy resistance of malignant cells represents the main reason responsible for the failure of cancer therapy. The growth of malignant cells at primary tumour sites but most importantly the dissemination of tumour cells and their growth at secondary sites, are the main reasons why patients eventually succumb to the disease. Even novel immune-based therapies find their limitation in most tumour types. The therapy resistance is mediated by the tumour cells but also by other cellular components of the tumour microenvironment. Understanding the tumour cells mechanisms and the tumour microenvironment features responsible for therapy resistance enables the development of novel therapeutic strategies. Here, we show that ionizing irradiation, 5-azacytidine, and IFNγ treatments induced expression of suprabasin (SBSN) and therapy-resistant low-adherent phenotype in cancer cells. Knockdown of SBSN resulted in suppression of the phenotype. Next, we identified aberrantly elevated SBSN in the bone marrow of a subgroup of myelodysplastic syndromes (MDS) patients. SBSN was expressed by myeloid-derived suppressor cells (MDSCs) and showed significant anti-correlation with T cell abundance and CCL2 levels, hence promises a prognostic value in clinical use. We compiled the most of the relevant knowledge of SBSN...
DNA damage and signalling pathways in cellular senescence
Hubáčková, Soňa
Organisms such as mammals need tissue renewal as an important process for maintenance of their viability. Because proliferation is essential also for tumourigenesis, cells need tumour-suppressor mechanisms to protect organism against cancer. Cellular senescence, the permanent state of cell-cycle arrest, features one of these intrinsic barriers against tumourigenesis after DNA damage and understanding of this process may lead to finding of novel therapeutic targets and to optimization of chemotherapy for patients with cancer. In the first part of the PhD thesis, we investigated activation of JAK/STAT signalling pathway in drug-induced senescence. We used genotoxic drugs like aphidicolin, camptothecine, 5-bromo- 2'-doexyuridin, etoposide or thymidine to induce premature senescence in normal and cancer cells. All this chemicals were able to persistently activate JAK/STAT signalling in monitored cells. Activation of STATs was accompanied with up-regulation of expression of interferon-stimulated genes (ISGs), such as MX1, IRF1, IRF7 and PML. Since IRF1 and IRF7 can be directly involved in stimulation of the IFN genes, we show activated expression as well as secretion of IFNbeta and IFNgamma, but not IFNalpha in drug-induced senescent cells. Furthermore, an inhibition of JAK1 as a major kinase of STAT...
Mechanisms of phenotypic plasticity induced by genotoxic stress
Přibyl, Miroslav ; Hodný, Zdeněk (advisor) ; Remešová, Hana (referee) ; Vomastek, Tomáš (referee)
Therapy resistance of malignant cells represents the main reason responsible for the failure of cancer therapy. The growth of malignant cells at primary tumour sites but most importantly the dissemination of tumour cells and their growth at secondary sites, are the main reasons why patients eventually succumb to the disease. Even novel immune-based therapies find their limitation in most tumour types. The therapy resistance is mediated by the tumour cells but also by other cellular components of the tumour microenvironment. Understanding the tumour cells mechanisms and the tumour microenvironment features responsible for therapy resistance enables the development of novel therapeutic strategies. Here, we show that ionizing irradiation, 5-azacytidine, and IFNγ treatments induced expression of suprabasin (SBSN) and therapy-resistant low-adherent phenotype in cancer cells. Knockdown of SBSN resulted in suppression of the phenotype. Next, we identified aberrantly elevated SBSN in the bone marrow of a subgroup of myelodysplastic syndromes (MDS) patients. SBSN was expressed by myeloid-derived suppressor cells (MDSCs) and showed significant anti-correlation with T cell abundance and CCL2 levels, hence promises a prognostic value in clinical use. We compiled the most of the relevant knowledge of SBSN...
Genotoxic stress and senescence in tumour cells: impact on the tumour growth and anti-tumour immunity.
Sapega, Olena ; Reiniš, Milan (advisor) ; Brábek, Jan (referee) ; Šmahel, Michal (referee)
Premature cellular senescence is the process of permanent cell cycle arrest in response to various inducers, such as DNA damage, oxidative stress, chemotherapy agents, and irradiation. Senescent cells produce and secrete numbers of cytokines, chemokines, growth factors, which compose specific senescence-associated secretory phenotype (SASP). Senescence is considered to be an important barrier against tumor progression. On the other hand, senescent cells can also exert protumorigenic effects in their microenvironment. Based on this concept, the major aim of this thesis was to determine tumor cells senescence in terms of different inducers, namely chemotherapeutic agent docetaxel (DTX) and cytokines IFNγ and TNFα, and to demonstrate the role of immunotherapy in senescent cells elimination. Our results show that DTX-induced senescent cells can exert a tumor-promoting effect when co-injected with proliferating cells in mice. Importantly, we demonstrate that IL-12-based immunotherapy suppresses senescence-accelerated tumor growth. These results suggest that IL-12-based immunotherapy can be effectively used in anti-tumor therapy mainly in a case when the microenvironment is altered by the presence of tumor senescent cells. On the other hand, the data we obtained in vitro show that bystander or...
Cell response to genotoxic stress-based anti-cancer therapies
Imrichová, Terezie ; Hodný, Zdeněk (advisor) ; Rossmeislová, Lenka (referee) ; Rotrekl, Vladimír (referee)
The dissertation deals with a cell response to genotoxic stress, specifically to anti-cancer treatments with a genotoxic mechanism of action. In principle, cells can respond to these perturbing stimuli in several ways: in case of severe DNA damage, they usually undergo apoptosis or enter senescence. In case of minor DNA damage, or upon defective checkpoint mechanisms, they may continue the cell cycle, either with successfully repaired DNA or with mutations of various kind. Thanks to selection pressure, the mutations that provide cells with a certain growth advantage under conditions of continuing genotoxic stress, gradually accumulate and render the tumor treatment-resistant. In my thesis, I focus on several aspects of this whole process. First, I participated in a characterization of a radioresistant and anoikis-resistant population of prostate cancer cells. This population was generated by irradiating cells 35 times by 2 Gy, a regime used in clinics. After this treatment, a population of low-adherent cells emerged that demonstrated increased expression of EMT- and stem cell markers. The low-adherent state of these cells was maintained by Snail signaling and their anoikis resistance by ERK1/2 signaling. Interestingly, after a protracted period of time, these cells were able to re-adhere and...
Cellular senescence and ageing-associated diseases
Antoš, Šimon ; Hodný, Zdeněk (advisor) ; Horníková, Daniela (referee)
In the last years more evidence supports the role of cellular senescence in ageing-associated diseases. Cellular senescence plays a role in these diseases on multiple levels and often directly supports their pathogenesis. The goal of this bachelor thesis is to summarize latest knowledge regarding the mechanism and the efect cellular senescence has in ageing-associated diseases, namely cancer, atherosclerosis, osteoarthritis, neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and multiple sclerosis, obesity and diabetes mellitus type two.
Pathophysiological development and differentiation of cells during hematopoiesis
Moudrá, Alena ; Štěpánek, Ondřej (advisor) ; Černý, Jan (referee) ; Kalina, Tomáš (referee)
In recent years, a great effort has been deployed towards a better understanding of the molecular changes in cells and in the bone marrow (BM) environment that contribute to the development and progression of myelodysplastic syndrome (MDS) to acute myeloid leukemia (AML). Among others, the aberrant hematopoietic stem cells in MDS often display increase in DNA double strand breaks, genomic instability with common loss or rearrangement of chromosomes and an ineffective response to DNA damage, a phenomenon that has been linked to the onset of cellular senescence. Additionally, the BM microenvironment can become more pro-inflammatory. In our effort to better understand the contribution of the BM microenvironment on MDS progression, we analyzed the expression profiles of cytokines in the BM microenvironment in all stages of MDS/AML and found several proinflammatory cytokines that increase with disease progression. Also, by repeated sampling of patients over the course of 5-azacytidine therapy, we were able to assess the changes in the proinflammatory cytokine milieu with the progression of the disease. Additionally, we aimed to identify the candidate markers for the improvement of MDS prognosis. We focused on naturally occurring germline polymorphism of NAD(P)H dehydrogenase (quinone 1) gene (NQO1*2)...

National Repository of Grey Literature : 18 records found   1 - 10next  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.